Search results for " Mechanics of Materials"
showing 10 items of 110 documents
Stress field model for strengthening of shear-flexure critical RC beams
2017
A model for the design of shear-flexure critical reinforced concrete elements strengthened with fiber-reinforced polymer (FRP) sheets and plates is presented. The model is based on the stress field approach and the equilibrium method and accounts for the different failure modes of FRP, focusing on the debonding of the FRP from the concrete surface. The efficiency of the model in the strength assessment of beams reinforced with FRP by the prediction of the shear-flexure capacity is checked by corroborating the results of several experimental tests found in the literature. Moreover, the presented model's capacity to reproduce experimental behavior is compared with the formulations suggested b…
Growth of low-density vertical quantum dot molecules with control in energy emission
2010
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License.-- This article is part of the series 8th International Workshop on Epitaxial Semiconductors on Patterned Substrates and Novel Index Surfaces.
Analytical evaluation of steel–concrete composite trussed beam shear capacity
2015
A calculation method for the prediction of the shear resistance of precast composite beams, named Hybrid Steel Trussed-Concrete Beams (HSTCBs), is herein proposed. HSTCBs are constituted by a prefabricated steel truss embedded within a concrete matrix cast in situ so that, after curing, the two materials work together in the mechanical response of the composite structural element, the steel truss behaving as reinforcement of the beam. The proposed analytical model is developed on the basis of the results of a reference experimental campaign of three-point bending tests available in the literature, carried out on specimens of HSTCB designed in order to attain a shear failure. Furthermore, th…
Evaluación del efecto rejuvenecedor de bio-materiales sobre ligantes para mezclas con alto contenido de asfalto recuperado
2017
The interest in using bio-materials in pavement engineering has grown significantly over the last decades due to environmental concerns about the use of non-recoverable natural resources. In this paper, bio-materials are used together with Reclaimed Asphalt (RA) to restore some of the properties of the aged bitumen present in mixtures with high RA content. For this purpose, two bio-materials are studied and compared to conventional and polymer modified bitumens. Blends of these materials with RA bitumen were produced and studied to simulate a 50% RA mixture. The rejuvenating effect of the two bio-materials on RA has been assessed and compared with the effect of the conventional binders. App…
Empirical Equations for the Direct Definition of Stress–Strain Laws for Fiber-Section-Based Macromodeling of Infilled Frames
2018
Equivalent strut macromodels are largely used to model the influence of infill walls in frame structures due to their simplicity and effectiveness from a computational point of view. Despite these advantages, which are fundamental to carrying out seismic simulation of complex structures, equivalent struts are phenomenological models and therefore have to conventionally account for the influence of really large amounts of geometrical and mechanical variables with a relatively simple inelastic response. Mechanical approaches, generally used to evaluate the force-displacement curve of a strut, are based on hypothesizing the damage mechanism that will occur for an infill-frame system subject to…
A Novel Solution for the Elimination of Mode Switching in Pump-Controlled Single-Rod Cylinders
2020
This paper concerns the stability issue of pump-controlled single-rod cylinders, known as mode switching. First, a review of the topic is provided. Thereafter, the most recently proposed solution for the elimination of mode switching is investigated and shown to result in unstable behavior under certain operating conditions. A theoretical analysis is provided demonstrating the underlying mechanisms of this behavior. Based on the analysis, a novel control strategy is proposed and investigated numerically. Proper operation and stability are demonstrated for a wide range of operating conditions, including situations under which the most recently proposed solution results in unstable behavior a…
Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS) filled PS nanocomposites
2012
The polyhedral oligomeric silsesquioxane (POSS) additivated polystyrene (PS) based nanocomposites were pre- pared by melt processing and the structure-properties relationships of the POSS-PS systems were compared to those of the neat PS. In order to investigate the effect of these structural parameters on the final properties of the polymer nanocompos- ites, five different kinds of POSS samples were used, in particular, POSS with different inorganic cage and with different organic pendent groups. The rheological investigation suggests clearly that the POSS acts as a plasticizer and that the processability of the PS was positively modified. The affinity between the POSS samples and the PS ma…
Development of Point-to-Point Path Control in Actuator Space for Hydraulic Knuckle Boom Crane
2020
This paper presents a novel method for point-to-point path control for a hydraulic knuckle boom crane. The developed path control algorithm differs from previous solutions by operating in the actuator space instead of the joint space or Cartesian space of the crane. By operating in actuator space, almost all the parameters and constraints of the system become either linear or constant, which greatly reduces the complexity of both the control algorithm and path generator. For a given starting point and endpoint, the motion for each actuator is minimized compared to other methods. This ensures that any change in direction of motion is avoided, thereby greatly minimizing fatigue, jerky motion,…
Torsional shear strength and elastic properties of adhesively bonded glass-to-steel components
2020
Nowadays glass is widely used in building applications and coupled to steel through adhesive joining. Reliable mechanical characterization of these joints is necessary to design and predict the final structure performance.In this framework, the aim of this paper is to measure the pure shear strength and elastic modulus for design and modelling of adhesive joined glass-to-steel structures.Torsional shear strength and elastic properties of an adhesively bonded glass-to-steel component were measured on several joined steel-to-steel and steel-to-glass samples.An epoxy resin-based adhesive was used as joining material for AISI304 steel and soda-lime glass.The same steel and adhesive were used to…
Anisotropy of the stiffness and strength of rigid low-density closed-cell polyisocyanurate foams
2016
The cells of polymer foams are usually extended in the foam rise direction, causing a geometrical anisotropy, the degree of which, characterized by the cell aspect ratio R, depends on foam density and production method. Such elongated cell shape translates into anisotropy of the mechanical properties of foams. Rigid low-density closed-cell polyisocyanurate foams of apparent density ranging from ca. 30 to 75 kg/m3, containing polyols derived from renewable resources, have been produced and tested for the stiffness and strength in the foam rise and transverse directions in order to experimentally characterize their mechanical anisotropy. Analytical relations for foams with rectangular paralle…